Federal Aviation Administration, DOT

(a) Limit loads without-

(1) Interference with the safe operation of the airplane; and

(2) Detrimental permanent deformation.

(b) Ultimate loads.

§23.2240 Structural durability.

(a) The applicant must develop and implement inspections or other procedures to prevent structural failures due to foreseeable causes of strength degradation, which could result in serious or fatal injuries, or extended periods of operation with reduced safety margins. Each of the inspections or other procedures developed under this section must be included in the Airworthiness Limitations Section of the Instructions for Continued Airworthiness required by §23.1529.

(b) For Level 4 airplanes, the procedures developed for compliance with paragraph (a) of this section must be capable of detecting structural damage before the damage could result in structural failure.

(c) For pressurized airplanes:

(1) The airplane must be capable of continued safe flight and landing following a sudden release of cabin pressure, including sudden releases caused by door and window failures.

(2) For airplanes with maximum operating altitude greater than 41,000 feet, the procedures developed for compliance with paragraph (a) of this section must be capable of detecting damage to the pressurized cabin structure before the damage could result in rapid decompression that would result in serious or fatal injuries.

(d) The airplane must be designed to minimize hazards to the airplane due to structural damage caused by highenergy fragments from an uncontained engine or rotating machinery failure.

§23.2245 Aeroelasticity.

(a) The airplane must be free from flutter, control reversal, and divergence—

(1) At all speeds within and sufficiently beyond the structural design envelope;

(2) For any configuration and condition of operation;

(3) Accounting for critical degrees of freedom; and

(4) Accounting for any critical failures or malfunctions.

(b) The applicant must establish tolerances for all quantities that affect flutter.

DESIGN

§23.2250 Design and construction principles.

(a) The applicant must design each part, article, and assembly for the expected operating conditions of the airplane.

(b) Design data must adequately define the part, article, or assembly configuration, its design features, and any materials and processes used.

(c) The applicant must determine the suitability of each design detail and part having an important bearing on safety in operations.

(d) The control system must be free from jamming, excessive friction, and excessive deflection when the airplane is subjected to expected limit airloads.

(e) Doors, canopies, and exits must be protected against inadvertent opening in flight, unless shown to create no hazard when opened in flight.

§23.2255 Protection of structure.

(a) The applicant must protect each part of the airplane, including small parts such as fasteners, against deterioration or loss of strength due to any cause likely to occur in the expected operational environment.

(b) Each part of the airplane must have adequate provisions for ventilation and drainage.

(c) For each part that requires maintenance, preventive maintenance, or servicing, the applicant must incorporate a means into the aircraft design to allow such actions to be accomplished.

§23.2260 Materials and processes.

(a) The applicant must determine the suitability and durability of materials used for parts, articles, and assemblies, accounting for the effects of likely environmental conditions expected in service, the failure of which could prevent continued safe flight and landing.

(b) The methods and processes of fabrication and assembly used must produce consistently sound structures.