Federal Aviation Administration, DOT

have controllable longitudinal and directional handling characteristics during taxi, takeoff, and landing operations.

§ 23.2160 Vibration, buffeting, and high-speed characteristics.

- (a) Vibration and buffeting, for operations up to V_D/M_D , must not interfere with the control of the airplane or cause excessive fatigue to the flightcrew. Stall warning buffet within these limits is allowable.
- (b) For high-speed airplanes and all airplanes with a maximum operating altitude greater than 25,000 feet (7,620 meters) pressure altitude, there must be no perceptible buffeting in cruise configuration at 1g and at any speed up to $V_{\rm MO}/M_{\rm MO}$, except stall buffeting.
- (c) For high-speed airplanes, the applicant must determine the positive maneuvering load factors at which the onset of perceptible buffet occurs in the cruise configuration within the operational envelope. Likely inadvertent excursions beyond this boundary must not result in structural damage.
- (d) High-speed airplanes must have recovery characteristics that do not result in structural damage or loss of control, beginning at any likely speed up to V_{MO}/M_{MO} , following—
- (1) An inadvertent speed increase; and
- (2) A high-speed trim upset for airplanes where dynamic pressure can impair the longitudinal trim system operation.

§ 23.2165 Performance and flight characteristics requirements for flight in icing conditions.

- (a) An applicant who requests certification for flight in icing conditions defined in part 1 of appendix C to part 25 of this chapter, or an applicant who requests certification for flight in these icing conditions and any additional atmospheric icing conditions, must show the following in the icing conditions for which certification is requested under normal operation of the ice protection system(s):
- (1) Compliance with each requirement of this subpart, except those applicable to spins and any that must be demonstrated at speeds in excess of—

- (i) 250 knots CAS;
- (ii) V_{MO}/M_{MO} or V_{NE} ; or
- (iii) A speed at which the applicant demonstrates the airframe will be free of ice accretion.
- (2) The means by which stall warning is provided to the pilot for flight in icing conditions and non-icing conditions is the same.
- (b) If an applicant requests certification for flight in icing conditions, the applicant must provide a means to detect any icing conditions for which certification is not requested and show the airplane's ability to avoid or exit those conditions.
- (c) The applicant must develop an operating limitation to prohibit intentional flight, including takeoff and landing, into icing conditions for which the airplane is not certified to operate.

Subpart C—Structures

§ 23.2200 Structural design envelope.

The applicant must determine the structural design envelope, which describes the range and limits of airplane design and operational parameters for which the applicant will show compliance with the requirements of this subpart. The applicant must account for all airplane design and operational parameters that affect structural loads, strength, durability, and aeroelasticity, including:

- (a) Structural design airspeeds, landing descent speeds, and any other airspeed limitation at which the applicant must show compliance to the requirements of this subpart. The structural design airspeeds must—
- (1) Be sufficiently greater than the stalling speed of the airplane to safeguard against loss of control in turbulent air; and
- (2) Provide sufficient margin for the establishment of practical operational limiting airspeeds.
- (b) Design maneuvering load factors not less than those, which service history shows, may occur within the structural design envelope.
- (c) Inertial properties including weight, center of gravity, and mass moments of inertia, accounting for—
- (1) Each critical weight from the airplane empty weight to the maximum weight; and