Federal Aviation Administration, DOT

stable sense. This factor of proportionality must lie between limits found necessary for safe operation. The range of sideslip angles evaluated must include those sideslip angles resulting from the lesser of:

- (1) One-half of the available rudder control input; and
- (2) A rudder control force of 180 pounds.
- (d) For sideslip angles greater than those prescribed by paragraph (c) of this section, up to the angle at which full rudder control is used or a rudder control force of 180 pounds is obtained, the rudder control forces may not reverse, and increased rudder deflection must be needed for increased angles of sideslip. Compliance with this requirement must be shown using straight, steady sideslips, unless full lateral control input is achieved before reaching either full rudder control input or a rudder control force of 180 pounds; a straight, steady sideslip need not be maintained after achieving full lateral control input. This requirement must be met at all approved landing gear and flap positions for the range of operating speeds and power conditions appropriate to each landing gear and flap position with all engines operating.

[Amdt. 25–135, 76 FR 74654, Dec. 1, 2011]

§25.181 Dynamic stability.

- (a) Any short period oscillation, not including combined lateral-directional oscillations, occurring between 1.13 $V_{\rm SR}$ and maximum allowable speed appropriate to the configuration of the airplane must be heavily damped with the primary controls—
 - (1) Free; and
 - (2) In a fixed position.
- (b) Any combined lateral-directional oscillations ("Dutch roll") occurring between 1.13 V_{SR} and maximum allowable speed appropriate to the configuration of the airplane must be positively damped with controls free, and must be controllable with normal use of the primary controls without requiring exceptional pilot skill.

[Amdt. 25–42, 43 FR 2322, Jan. 16, 1978, as amended by Amdt. 25–72, 55 FR 29775, July 20, 1990; 55 FR 37607, Sept. 12, 1990; Amdt. 25–108, 67 FR 70827, Nov. 26, 2002]

STALLS

§25.201 Stall demonstration.

- (a) Stalls must be shown in straight flight and in 30 degree banked turns with—
 - (1) Power off; and
- (2) The power necessary to maintain level flight at 1.5 V_{SRI} (where V_{SRI} corresponds to the reference stall speed at maximum landing weight with flaps in the approach position and the landing gear retracted).
- (b) In each condition required by paragraph (a) of this section, it must be possible to meet the applicable requirements of §25.203 with—
- (1) Flaps, landing gear, and deceleration devices in any likely combination of positions approved for operation;
- (2) Representative weights within the range for which certification is requested;
- (3) The most adverse center of gravity for recovery; and
- (4) The airplane trimmed for straight flight at the speed prescribed in §25.103(b)(6).
- (c) The following procedures must be used to show compliance with §25.203;
- (1) Starting at a speed sufficiently above the stalling speed to ensure that a steady rate of speed reduction can be established, apply the longitudinal control so that the speed reduction does not exceed one knot per second until the airplane is stalled.
- (2) In addition, for turning flight stalls, apply the longitudinal control to achieve airspeed deceleration rates up to 3 knots per second.
- (3) As soon as the airplane is stalled, recover by normal recovery techniques.
- (d) The airplane is considered stalled when the behavior of the airplane gives the pilot a clear and distinctive indication of an acceptable nature that the airplane is stalled. Acceptable indications of a stall, occurring either individually or in combination, are—
- (1) A nose-down pitch that cannot be readily arrested;
- (2) Buffeting, of a magnitude and severity that is a strong and effective deterrent to further speed reduction; or
- (3) The pitch control reaches the aft stop and no further increase in pitch attitude occurs when the control is