Section 25.349 14 CFR Ch. I (1-1-19 Edition) taking into account, as separate conditions, the effects of - (1) Propeller slipstream corresponding to maximum continuous power at the design flap speeds VF, and with takeoff power at not less than 1.4 times the stalling speed for the particular flap position and associated maximum weight; and (2) A head-on gust of 25 feet per second velocity (EAS). (c) If flaps or other high lift devices are to be used in en route conditions, and with flaps in the appropriate position at speeds up to the flap design speed chosen for these conditions, the airplane is assumed to be subjected to symmetrical maneuvers and gusts within the range determined by - (1) Maneuvering to a positive limit load factor as prescribed in Section 25.337(b); and (2) The vertical gust and turbulence conditions prescribed in Section 25.341(a) and (b). (d) The airplane must be designed for a maneuvering load factor of 1.5 g at the maximum take-off weight with the wing-flaps and similar high lift devices in the landing configurations. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-46, 43 FR 50595, Oct. 30, 1978; Amdt. 25-72, 55 FR 37607, Sept. 17, 1990; Amdt. 25-86, 61 FR 5221, Feb. 9, 1996; Amdt. 25-91, 62 FR 40704, July 29, 1997; Amdt. 25-141, 79 FR 73468, Dec. 11, 2014] spaschal on DSK3GDR082PROD with CFR Section 25.349 Rolling conditions. The airplane must be designed for loads resulting from the rolling conditions specified in paragraphs (a) and (b) of this section. Unbalanced aerodynamic moments about the center of gravity must be reacted in a rational or conservative manner, considering the principal masses furnishing the reacting inertia forces. (a) Maneuvering. The following conditions, speeds, and aileron deflections (except as the deflections may be limited by pilot effort) must be considered in combination with an airplane load factor of zero and of two-thirds of the positive maneuvering factor used in design. In determining the required aileron deflections, the torsional flexibility of the wing must be considered in accordance with Section 25.301(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero rolling velocity may be assumed in the absence of a rational time history investigation of the maneuver. (2) At VA, a sudden deflection of the aileron to the stop is assumed. (3) At VC, the aileron deflection must be that required to produce a rate of roll not less than that obtained in paragraph (a)(2) of this section. (4) At VD, the aileron deflection must be that required to produce a rate of roll not less than one-third of that in paragraph (a)(2) of this section. (b) Unsymmetrical gusts. The airplane is assumed to be subjected to unsymmetrical vertical gusts in level flight. The resulting limit loads must be determined from either the wing maximum airload derived directly from Section 25.341(a), or the wing maximum airload derived indirectly from the vertical load factor calculated from Section 25.341(a). It must be assumed that 100 percent of the wing air load acts on one side of the airplane and 80 percent of the wing air load acts on the other side. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-23, 35 FR 5672, Apr. 8, 1970; Amdt. 25-86, 61 FR 5222, Feb. 9, 1996; Amdt. 25-94, 63 FR 8848, Feb. 23, 1998] Section 25.351 Yaw maneuver conditions. The airplane must be designed for loads resulting from the yaw maneuver conditions specified in paragraphs (a) through (d) of this section at speeds from VMC to VD. Unbalanced aerodynamic moments about the center of gravity must be reacted in a rational or conservative manner considering the airplane inertia forces. In computing the tail loads the yawing velocity may be assumed to be zero. (a) With the airplane in unaccelerated flight at zero yaw, it is assumed that the cockpit rudder control is suddenly displaced to achieve the resulting rudder deflection, as limited by: 242 VerDate Sep<11>2014 12:50 Apr 30, 2019 Jkt 247046 PO 00000 Frm 00252 Fmt 8010 Sfmt 8010 Y:\SGML\247046.XXX 247046