Federal Aviation Administration, DOT Section 25.509 unbalanced yawing moments assumed to be resisted by airplane inertia forces. (d) For other than the nose gear, its attaching structure, and the forward fuselage structure, the loading conditions are those prescribed in paragraph (b) of this section, except that - (1) A lower drag reaction may be used if an effective drag force of 0.8 times the vertical reaction cannot be reached under any likely loading condition; and (2) The forward acting load at the center of gravity need not exceed the maximum drag reaction on one main gear, determined in accordance with Section 25.493(b). (e) With the airplane at design ramp weight, and the nose gear in any steerable position, the combined application of full normal steering torque and vertical force equal to 1.33 times the maximum static reaction on the nose gear must be considered in designing the nose gear, its attaching structure, and the forward fuselage structure. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-23, 35 FR 5673, Apr. 8, 1970; Amdt. 25-46, 43 FR 50595, Oct. 30, 1978; Amdt. 25-91, 62 FR 40705, July 29, 1997] spaschal on DSK3GDR082PROD with CFR Section 25.503 Pivoting. (a) The airplane is assumed to pivot about one side of the main gear with the brakes on that side locked. The limit vertical load factor must be 1.0 and the coefficient of friction 0.8. (b) The airplane is assumed to be in static equilibrium, with the loads being applied at the ground contact points, in accordance with figure 8 of appendix A. Section 25.507 Reversed braking. (a) The airplane must be in a three point static ground attitude. Horizontal reactions parallel to the ground and directed forward must be applied at the ground contact point of each wheel with brakes. The limit loads must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the nominal maximum static brake torque, whichever is less. (b) For airplanes with nose wheels, the pitching moment must be balanced by rotational inertia. (c) For airplanes with tail wheels, the resultant of the ground reactions must pass through the center of gravity of the airplane. Section 25.509 Towing loads. (a) The towing loads specified in paragraph (d) of this section must be considered separately. These loads must be applied at the towing fittings and must act parallel to the ground. In addition - (1) A vertical load factor equal to 1.0 must be considered acting at the center of gravity; (2) The shock struts and tires must be in their static positions; and (3) With WT as the design ramp weight, the towing load, FTOW, is - (i) 0.3 WT for WT less than 30,000 pounds; (ii) (6WT + 450,000)/70 for WT between 30,000 and 100,000 pounds; and (iii) 0.15 WT for WT over 100,000 pounds. (b) For towing points not on the landing gear but near the plane of symmetry of the airplane, the drag and side tow load components specified for the auxiliary gear apply. For towing points located outboard of the main gear, the drag and side tow load components specified for the main gear apply. Where the specified angle of swivel cannot be reached, the maximum obtainable angle must be used. (c) The towing loads specified in paragraph (d) of this section must be reacted as follows: (1) The side component of the towing load at the main gear must be reacted by a side force at the static ground line of the wheel to which the load is applied. (2) The towing loads at the auxiliary gear and the drag components of the towing loads at the main gear must be reacted as follows: (i) A reaction with a maximum value equal to the vertical reaction must be applied at the axle of the wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The prescribed towing loads are as follows: 253 VerDate Sep<11>2014 12:50 Apr 30, 2019 Jkt 247046 PO 00000 Frm 00263 Fmt 8010 Sfmt 8010 Y:\SGML\247046.XXX 247046