Federal Aviation Administration, DOT Section 25.561 (e) Unsymmetrical bow loading. The resultant water load consists of a component equal to 0.75 times the load specified in paragraph (b) of this section and a side component equal to 0.25 tan b times the load specified in paragraph (c) of this section. The side load must be applied perpendicularly to the plane of symmetry at a point midway between the keel and the chine. (f) Immersed float condition. The resultant load must be applied at the centroid of the cross section of the float at a point one-third of the distance from the bow to the step. The limit load components are as follows: vertical= gV 2 3 aft = Cx 2 V KVS 0 2 side = 3 Cy 2 V KV S0 2 2 where - r = mass density of water (slugs/ft.2); V = volume of float (ft.2); Cx = coefficient of drag force, equal to 0.133; Cy = coefficient of side force, equal to 0.106; K = 0.8, except that lower values may be used if it is shown that the floats are incapable of submerging at a speed of 0.8 VS0 in normal operations; VS0 = seaplane stalling speed (knots) with landing flaps extended in the appropriate position and with no slipstream effect; and g = acceleration due to gravity (ft./sec.2). (g) Float bottom pressures. The float bottom pressures must be established under Section 25.533, except that the value of K2 in the formulae may be taken as 1.0. The angle of dead rise to be used in determining the float bottom pressures is set forth in paragraph (b) of this section. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-23, 35 FR 5673, Apr. 8, 1970] Seawing loads. Seawing design loads must be based on applicable test data. 259 VerDate Sep<11>2014 12:50 Apr 30, 2019 Jkt 247046 PO 00000 Frm 00269 Fmt 8010 Sfmt 8010 Y:\SGML\247046.XXX 247046 EC28SE91.043 spaschal on DSK3GDR082PROD with CFR Section 25.537 EMERGENCY LANDING CONDITIONS Section 25.561 General. (a) The airplane, although it may be damaged in emergency landing conditions on land or water, must be designed as prescribed in this section to protect each occupant under those conditions. (b) The structure must be designed to give each occupant every reasonable chance of escaping serious injury in a minor crash landing when - (1) Proper use is made of seats, belts, and all other safety design provisions; (2) The wheels are retracted (where applicable); and (3) The occupant experiences the following ultimate inertia forces acting separately relative to the surrounding structure: (i) Upward, 3.0g (ii) Forward, 9.0g (iii) Sideward, 3.0g on the airframe; and 4.0g on the seats and their attachments. (iv) Downward, 6.0g (v) Rearward, 1.5g (c) For equipment, cargo in the passenger compartments and any other large masses, the following apply: (1) Except as provided in paragraph (c)(2) of this section, these items must be positioned so that if they break loose they will be unlikely to: (i) Cause direct injury to occupants; (ii) Penetrate fuel tanks or lines or cause fire or explosion hazard by damage to adjacent systems; or (iii) Nullify any of the escape facilities provided for use after an emergency landing. (2) When such positioning is not practical (e.g. fuselage mounted engines or auxiliary power units) each such item of mass shall be restrained under all loads up to those specified in paragraph (b)(3) of this section. The local attachments for these items should be designed to withstand 1.33 times the specified loads if these items are subject to severe wear and tear through frequent removal (e.g. quick change interior items). (d) Seats and items of mass (and their supporting structure) must not deform under any loads up to those specified in paragraph (b)(3) of this section in any manner that would impede