Federal Aviation Administration, DOT Section 27.561 vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which - (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally among the floats; and (2) For each float, the load share determined under paragraph (b)(1) of this section, combined with a total side load of 0.25 times the total vertical load specified in paragraph (b)(1) of this section, is applied to that float only. MAIN COMPONENT REQUIREMENTS spaschal on DSK3GDR082PROD with CFR Section 27.547 Main rotor structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) [Reserved] (c) The main rotor structure must be designed to withstand the following loads prescribed in SectionSection 27.337 through 27.341: (1) Critical flight loads. (2) Limit loads occurring under normal conditions of autorotation. For this condition, the rotor r.p.m. must be selected to include the effects of altitude. (d) The main rotor structure must be designed to withstand loads simulating - (1) For the rotor blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground operation; and (2) Any other critical condition expected in normal operation. (e) The main rotor structure must be designed to withstand the limit torque at any rotational speed, including zero. In addition: (1) The limit torque need not be greater than the torque defined by a torque limiting device (where provided), and may not be less than the greater of - (i) The maximum torque likely to be transmitted to the rotor structure in either direction; and (ii) The limit engine torque specified in Section 27.361. (2) The limit torque must be distributed to the rotor blades in a rational manner. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C. 1424, 1425) [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27-3, 33 FR 14105, Sept. 18, 1968] Section 27.549 Fuselage, landing gear, and rotor pylon structures. (a) Each fuselage, landing gear, and rotor pylon structure must be designed as prescribed in this section. Resultant rotor forces may be represented as a single force applied at the rotor hub attachment point. (b) Each structure must be designed to withstand - (1) The critical loads prescribed in SectionSection 27.337 through 27.341; (2) The applicable ground loads prescribed in SectionSection 27.235, 27.471 through 27.485, 27.493, 27.497, 27.501, 27.505, and 27.521; and (3) The loads prescribed in Section 27.547 (d)(2) and (e). (c) Auxiliary rotor thrust, and the balancing air and inertia loads occurring under accelerated flight conditions, must be considered. (d) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C. 1424, 1425) [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27-3, 33 FR 14105, Sept. 18, 1968] EMERGENCY LANDING CONDITIONS Section 27.561 General. (a) The rotorcraft, although it may be damaged in emergency landing conditions on land or water, must be designed as prescribed in this section to protect the occupants under those conditions. (b) The structure must be designed to give each occupant every reasonable chance of escaping serious injury in a crash landing when - (1) Proper use is made of seats, belts, and other safety design provisions; 505 VerDate Sep<11>2014 12:50 Apr 30, 2019 Jkt 247046 PO 00000 Frm 00515 Fmt 8010 Sfmt 8010 Y:\SGML\247046.XXX 247046