spaschal on DSK3GDR082PROD with CFR Section 27.953 14 CFR Ch. I (1-1-19 Edition) incorporate the following design features: (i) The load necessary to separate a breakaway coupling must be between 25 to 50 percent of the minimum ultimate failure load (ultimate strength) of the weakest component in the fluidcarrying line. The separation load must in no case be less than 300 pounds, regardless of the size of the fluid line. (ii) A breakaway coupling must separate whenever its ultimate load (as defined in paragraph (c)(1)(i) of this section) is applied in the failure modes most likely to occur. (iii) All breakaway couplings must incorporate design provisions to visually ascertain that the coupling is locked together (leak-free) and is open during normal installation and service. (iv) All breakaway couplings must incorporate design provisions to prevent uncoupling or unintended closing due to operational shocks, vibrations, or accelerations. (v) No breakaway coupling design may allow the release of fuel once the coupling has performed its intended function. (2) All individual breakaway couplings, coupling fuel feed systems, or equivalent means must be designed, tested, installed, and maintained so that inadvertent fuel shutoff in flight is improbable in accordance with Section 27.955(a) and must comply with the fatigue evaluation requirements of Section 27.571 without leaking. (3) Alternate, equivalent means to the use of breakaway couplings must not create a survivable impact-induced load on the fuel line to which it is installed greater than 25 to 50 percent of the ultimate load (strength) of the weakest component in the line and must comply with the fatigue requirements of Section 27.571 without leaking. (d) Frangible or deformable structural attachments. Unless hazardous relative motion of fuel tanks and fuel system components to local rotorcraft structure is demonstrated to be extremely improbable in an otherwise survivable impact, frangible or locally deformable attachments of fuel tanks and fuel system components to local rotorcraft structure must be used. The attachment of fuel tanks and fuel system components to local rotorcraft struc- ture, whether frangible or locally deformable, must be designed such that its separation or relative local deformation will occur without rupture or local tear-out of the fuel tank or fuel system components that will cause fuel leakage. The ultimate strength of frangible or deformable attachments must be as follows: (1) The load required to separate a frangible attachment from its support structure, or deform a locally deformable attachment relative to its support structure, must be between 25 and 50 percent of the minimum ultimate load (ultimate strength) of the weakest component in the attached system. In no case may the load be less than 300 pounds. (2) A frangible or locally deformable attachment must separate or locally deform as intended whenever its ultimate load (as defined in paragraph (d)(1) of this section) is applied in the modes most likely to occur. (3) All frangible or locally deformable attachments must comply with the fatigue requirements of Section 27.571. (e) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far as practicable from all occupiable areas and from all potential ignition sources. (f) Other basic mechanical design criteria. Fuel tanks, fuel lines, electrical wires, and electrical devices must be designed, constructed, and installed, as far as practicable, to be crash resistant. (g) Rigid or semirigid fuel tanks. Rigid or semirigid fuel tank or bladder walls must be impact and tear resistant. [Doc. No. 26352, 59 FR 50386, Oct. 3, 1994] Section 27.953 Fuel system independence. (a) Each fuel system for multiengine rotorcraft must allow fuel to be supplied to each engine through a system independent of those parts of each system supplying fuel to other engines. However, separate fuel tanks need not be provided for each engine. (b) If a single fuel tank is used on a multiengine rotorcraft, the following must be provided: (1) Independent tank outlets for each engine, each incorporating a shutoff valve at the tank. This shutoff valve may also serve as the firewall shutoff 532 VerDate Sep<11>2014 12:50 Apr 30, 2019 Jkt 247046 PO 00000 Frm 00542 Fmt 8010 Sfmt 8010 Y:\SGML\247046.XXX 247046