632
14 CFR Ch. I (1–1–19 Edition)
§ 29.952
(2) For fuel tanks located above or
behind the crew or passenger compart-
ment that, if loosened, could injure an
occupant in an emergency landing:
(i) Upward—1.5g.
(ii) Forward—8g.
(iii) Sideward—2g.
(iv) Downward—4g.
(3) For fuel tanks in other areas:
(i) Upward—1.5g.
(ii) Forward—4g.
(iii) Sideward—2g.
(iv) Downward—4g.
(c)
Fuel line self-sealing breakaway
couplings.
Self-sealing breakaway cou-
plings must be installed unless haz-
ardous relative motion of fuel system
components to each other or to local
rotorcraft structure is demonstrated to
be extremely improbable or unless
other means are provided. The cou-
plings or equivalent devices must be
installed at all fuel tank-to-fuel line
connections, tank-to-tank intercon-
nects, and at other points in the fuel
system where local structural deforma-
tion could lead to the release of fuel.
(1) The design and construction of
self-sealing breakaway couplings must
incorporate the following design fea-
tures:
(i) The load necessary to separate a
breakaway coupling must be between
25 to 50 percent of the minimum ulti-
mate failure load (ultimate strength)
of the weakest component in the fluid-
carrying line. The separation load
must in no case be less than 300 pounds,
regardless of the size of the fluid line.
(ii) A breakaway coupling must sepa-
rate whenever its ultimate load (as de-
fined in paragraph (c)(1)(i) of this sec-
tion) is applied in the failure modes
most likely to occur.
(iii) All breakaway couplings must
incorporate design provisions to vis-
ually ascertain that the coupling is
locked together (leak-free) and is open
during normal installation and service.
(iv) All breakaway couplings must in-
corporate design provisions to prevent
uncoupling or unintended closing due
to operational shocks, vibrations, or
accelerations.
(v) No breakaway coupling design
may allow the release of fuel once the
coupling has performed its intended
function.
(2) All individual breakaway cou-
plings, coupling fuel feed systems, or
equivalent means must be designed,
tested, installed, and maintained so in-
advertent fuel shutoff in flight is im-
probable in accordance with § 29.955(a)
and must comply with the fatigue eval-
uation requirements of § 29.571 without
leaking.
(3) Alternate, equivalent means to
the use of breakaway couplings must
not create a survivable impact-induced
load on the fuel line to which it is in-
stalled greater than 25 to 50 percent of
the ultimate load (strength) of the
weakest component in the line and
must comply with the fatigue require-
ments of § 29.571 without leaking.
(d)
Frangible or deformable structural
attachments.
Unless hazardous relative
motion of fuel tanks and fuel system
components to local rotorcraft struc-
ture is demonstrated to be extremely
improbable in an otherwise survivable
impact, frangible or locally deformable
attachments of fuel tanks and fuel sys-
tem components to local rotorcraft
structure must be used. The attach-
ment of fuel tanks and fuel system
components to local rotorcraft struc-
ture, whether frangible or locally de-
formable, must be designed such that
its separation or relative local defor-
mation will occur without rupture or
local tear-out of the fuel tank or fuel
system component that will cause fuel
leakage. The ultimate strength of fran-
gible or deformable attachments must
be as follows:
(1) The load required to separate a
frangible attachment from its support
structure, or deform a locally deform-
able attachment relative to its support
structure, must be between 25 and 50
percent of the minimum ultimate load
(ultimate strength) of the weakest
component in the attached system. In
no case may the load be less than 300
pounds.
(2) A frangible or locally deformable
attachment must separate or locally
deform as intended whenever its ulti-
mate load (as defined in paragraph
(d)(1) of this section) is applied in the
modes most likely to occur.
(3) All frangible or locally deformable
attachments must comply with the fa-
tigue requirements of § 29.571.
VerDate Sep<11>2014
12:50 Apr 30, 2019
Jkt 247046
PO 00000
Frm 00642
Fmt 8010
Sfmt 8010
Y:\SGML\247046.XXX
247046
spaschal on DSK3GDR082PROD with CFR