Pt. 60, App. A 14 CFR Ch. I (1-1-19 Edition) simulation, generated with the revised avionics configuration. The QTG should also include an explanation of the nature of the change and its effect on the airplane response. (d) For an avionics change to a contributory system that significantly affects some tests in the QTG or where new functionality is added, the QTG should be based on validation data from the previously validated avionics configuration and supplemental avionics-specific flight test data sufficient to validate the alternate avionics revision. Additional flight test validation data may not be needed if the avionics changes were certified without the need for testing with a comprehensive flight instrumentation package. The airplane manufacturer should coordinate flight simulator data requirements, in advance with the NSPM. (5) A matrix or - roadmap - should be provided with the QTG indicating the appropriate validation data source for each test. The roadmap should include identification of the revision state of those contributory avionics systems that could affect specific test responses if changed. kpayne on VMOFRWIN702 with $$_JOB 15. TRANSPORT DELAY TESTING a. This paragraph explains how to determine the introduced transport delay through the flight simulator system so that it does not exceed a specific time delay. The transport delay should be measured from control inputs through the interface, through each of the host computer modules and back through the interface to motion, flight instrument, and visual systems. The transport delay should not exceed the maximum allowable interval. b. Four specific examples of transport delay are: (1) Simulation of classic non-computer controlled aircraft; (2) Simulation of computer controlled aircraft using real airplane black boxes; (3) Simulation of computer controlled aircraft using software emulation of airplane boxes; (4) Simulation using software avionics or re-hosted instruments. c. Figure A2C illustrates the total transport delay for a non-computer-controlled airplane or the classic transport delay test. Since there are no airplane-induced delays for this case, the total transport delay is equivalent to the introduced delay. d. Figure A2D illustrates the transport delay testing method using the real airplane controller system. e. To obtain the induced transport delay for the motion, instrument and visual signal, the delay induced by the airplane controller should be subtracted from the total transport delay. This difference represents the introduced delay and should not exceed the standards prescribed in Table A1A. f. Introduced transport delay is measured from the flight deck control input to the reaction of the instruments and motion and visual systems (See Figure A2C). g. The control input may also be introduced after the airplane controller system and the introduced transport delay measured directly from the control input to the reaction of the instruments, and simulator motion and visual systems (See Figure A2D). h. Figure A2E illustrates the transport delay testing method used on a flight simulator that uses a software emulated airplane controller system. i. It is not possible to measure the introduced transport delay using the simulated airplane controller system architecture for the pitch, roll and yaw axes. Therefore, the signal should be measured directly from the pilot controller. The flight simulator manufacturer should measure the total transport delay and subtract the inherent delay of the actual airplane components because the real airplane controller system has an inherent delay provided by the airplane manufacturer. The flight simulator manufacturer should ensure that the introduced delay does not exceed the standards prescribed in Table A1A. j. Special measurements for instrument signals for flight simulators using a real airplane instrument display system instead of a simulated or re-hosted display. For flight instrument systems, the total transport delay should be measured and the inherent delay of the actual airplane components subtracted to ensure that the introduced delay does not exceed the standards prescribed in Table A1A. (1) Figure A2FA illustrates the transport delay procedure without airplane display simulation. The introduced delay consists of the delay between the control movement and the instrument change on the data bus. (2) Figure A2FB illustrates the modified testing method required to measure introduced delay due to software avionics or rehosted instruments. The total simulated instrument transport delay is measured and the airplane delay should be subtracted from this total. This difference represents the introduced delay and should not exceed the standards prescribed in Table A1A. The inherent delay of the airplane between the data bus and the displays is indicated in figure A2FA. The display manufacturer should provide this delay time. k. Recorded signals. The signals recorded to conduct the transport delay calculations should be explained on a schematic block diagram. The flight simulator manufacturer should also provide an explanation of why each signal was selected and how they relate to the above descriptions. l. Interpretation of results. Flight simulator results vary over time from test to test due to - sampling uncertainty. - All flight simulators run at a specific rate where all 118 VerDate Sep<11>2014 16:30 Jun 25, 2019 Jkt 247047 PO 00000 Frm 00128 Fmt 8010 Sfmt 8002 Q:\14\14V2.TXT PC31