# Federal Aviation Administration, DOT

least two (2) levels so that upon encountering the windshear the pilot may identify its presence and apply the recommended procedures for escape from such a windshear.

(1) If the intensity is lesser, the performance capability of the simulated airplane in the windshear permits the pilot to maintain a satisfactory flightpath; and

(2) If the intensity is greater, the performance capability of the simulated airplane in the windshear does not permit the pilot to maintain a satisfactory flightpath (crash). Note: The means used to accomplish the "nonsurvivable" scenario of paragraph 3.b.(2) of this attachment, that involve operational elements of the simulated airplane, must reflect the dispatch limitations of the airplane.

c. Be available for use in the FAA-approved windshear flight training program.

## 4. Demonstrations

a. The sponsor must identify one survivable takeoff windshear training model and one survivable approach windshear training model. The wind components of the survivable models must be presented in graphical format so that all components of the windshear are shown, including initiation point, variance in magnitude, and time or distance correlations. The simulator must be operated at the same gross weight, airplane configuration, and initial airspeed during the takeoff demonstration (through calm air and through the first selected survivable windshear), and at the same gross weight, airplane configuration, and initial airspeed during the approach demonstration (through calm air and through the second selected survivable windshear).

b. In each of these four situations, at an "initiation point" (i.e., where windshear onset is or should be recognized), the recommended procedures for windshear recovery are applied and the results are recorded as specified in paragraph 5 of this attachment.

c. These recordings are made without inserting programmed random turbulence. Turbulence that results from the windshear model is to be expected, and no attempt may be made to neutralize turbulence from this source.

d. The definition of the models and the results of the demonstrations of all four?(4) cases described in paragraph 4.a of this attachment, must be made a part of the MQTG.

#### 5. Recording Parameters

a. In each of the four MQTG cases, an electronic recording (time history) must be made of the following parameters:

(1) Indicated or calibrated airspeed.

(2) Indicated vertical speed.

(3) Pitch attitude.

Pt. 60, App. A

(4) Indicated or radio altitude.

(5) Angle of attack.(6) Elevator position

(7) Engine data (thrust, N1, or throttle po-

(8) Wind magnitudes (simple windshear

model assumed). b. These recordings must be initiated at least 10 seconds prior to the initiation point, and continued until recovery is complete or

ground contact is made.

6. EQUIPMENT INSTALLATION AND OPERATION

All windshear warning, caution, or guidance hardware installed in the simulator must operate as it operates in the airplane. For example, if a rapidly changing wind speed and/or direction would have caused a windshear warning in the airplane, the simulator must respond equivalently without instructor/evaluator intervention.

7. QUALIFICATION TEST GUIDE

a. All QTG material must be forwarded to the NSPM.

b. A simulator windshear evaluation will be scheduled in accordance with normal procedures. Continuing qualification evaluation schedules will be used to the maximum extent possible.

c. During the on-site evaluation, the evaluator will ask the operator to run the performance tests and record the results. The results of these on-site tests will be compared to those results previously approved and placed in the QTG or MQTG, as appropriate.

d. QTGs for new (or MQTGs for upgraded) simulators must contain or reference the information described in paragraphs 2, 3, 4, and 5 of this attachment.

END QPS REQUIREMENTS

#### BEGIN INFORMATION

## 8. SUBJECTIVE EVALUATION

The NSPM will fly the simulator in at least two of the available windshear scenarios to subjectively evaluate simulator performance as it encounters the programmed windshear conditions.

a. One scenario will include parameters that enable the pilot to maintain a satisfactory flightpath.

b. One scenario will include parameters that will not enable the pilot to maintain a satisfactory flightpath (crash).

c. Other scenarios may be examined at the NSPM's discretion.

## 9. QUALIFICATION BASIS

The addition of windshear programming to a simulator in order to comply with the qualification for required windshear training