Pt. 60, App. A

END INFORMATION

BEGIN QPS REQUIREMENTS

C. Engine and Airframe Icing Evaluation (Table A1A, Section 2.j.)

1. Applicability: This section applies to all FSTDs that are used to satisfy training requirements for engine and airframe icing. New general requirements and objective requirements for simulator qualification have been developed to define aircraft specific icing models that support training objectives for the recognition and recovery from an inflight ice accretion event.

2. General Requirements: The qualification of engine and airframe icing consists of the following elements that must be considered when developing ice accretion models for use in training:

a. Ice accretion models must be developed to account for training the specific skills required for recognition of ice accumulation and execution of the required response.

b. Ice accretion models must be developed in a manner to contain aircraft specific recognition cues as determined with aircraft OEM supplied data or other suitable analytical methods.

c. At least one qualified ice accretion model must be objectively tested to demonstrate that the model has been implemented correctly and generates the correct cues as necessary for training.

3. Statement of Compliance: The SOC as described in Table A1A. Section 2.j. must contain the following information to support FSTD qualification of aircraft specific ice accretion models:

a. A description of expected aircraft specific recognition cues and degradation effects due to a typical in-flight icing encounter. Typical cues may include loss of lift, decrease in stall angle of attack, changes in pitching moment, decrease in control effectiveness, and changes in control forces in addition to any overall increase in drag. This description must be based upon relevant source data, such as aircraft OEM supplied data, accident/incident data, or other acceptable data sources. Where a particular airframe has demonstrated vulnerabilities to a specific type of ice accretion (due to accident/incident history) which requires specific training (such as supercooled large-droplet icing or tailplane icing), ice accretion models must be developed that address the training requirements.

b. A description of the data sources utilized to develop the qualified ice accretion models. Acceptable data sources may be, but are not limited to, flight test data, aircraft certification data, aircraft OEM engineering simulation data, or other analytical methods based upon established engineering principles.

14 CFR Ch. I (1–1–19 Edition)

4. Objective Demonstration Testing: The purpose of the objective demonstration test is to demonstrate that the ice accretion models as described in the Statement of Compliance have been implemented correctly and demonstrate the proper cues and effects as defined in the approved data sources. At least one ice accretion model must be selected for testing and included in the Master Qualification Test Guide (MQTG). Two tests are required to demonstrate engine and airframe icing effects. One test will demonstrate the FSTDs baseline performance without icing, and the second test will demonstrate the aerodynamic effects of ice accretion relative to the baseline test.

a. *Recorded Parameters:* In each of the two required MQTG cases, a time history recording must be made of the following parameters:

i. Altitude;

ii. Airspeed:

iii. Normal Acceleration;

iv. Engine Power/settings;

v. Angle of Attack/Pitch attitude;

vi. Bank Angle;

vii. Flight control inputs;

viii. Stall warning and stall buffet onset; and ix. Other parameters as necessary to demonstrate the effects of ice accretions.

b. Demonstration maneuver: The FSTD sponsor must select an ice accretion model as identified in the SOC for testing. The selected maneuver must demonstrate the effects of ice accretion at high angles of attack from a trimmed condition through approach to stall and "full" stall as compared to a baseline (no ice buildup) test. The ice accretion models must demonstrate the cues necessary to recognize the onset of ice accretion on the airframe, lifting surfaces, and engines and provide representative degradation in performance and handling qualities to the extent that a recovery can be executed. Typical recognition cues that may be present depending upon the simulated aircraft include:

i. Decrease in stall angle of attack;

- ii. Increase in stall speed;
- iii. Increase in stall buffet threshold of perception speed;
- iv. Changes in pitching moment;
- v. Changes in stall buffet characteristics;
- vi. Changes in control effectiveness or control forces; and
- vii. Engine effects (power variation, vibration, etc.);

The demonstration test may be conducted by initializing and maintaining a fixed amount of ice accretion throughout the maneuver in order to consistently evaluate the aerodynamic effects.