Pt. 60, App. C 14 CFR Ch. I (1-1-19 Edition) lllllllllllllllllllllll BEGIN INFORMATION 3. GENERAL a. If relevant winds are present in the objective data, the wind vector should be clearly noted as part of the data presentation, expressed in conventional terminology, and related to the runway being used for test near the ground. b. The reader is encouraged to review the Airplane Flight Simulator Evaluation Handbook, Volumes I and II, published by the Royal Aeronautical Society, London, UK, and FAA AC 25-7, as amended, Flight Test Guide for Certification of Transport Category Airplanes, and AC 23-8, as amended, Flight Test Guide for Certification of Part 23 Airplanes, for references and examples regarding flight testing requirements and techniques. kpayne on VMOFRWIN702 with $$_JOB 4. CONTROL DYNAMICS a. General. The characteristics of a helicopter flight control system have a major effect on the handling qualities. A significant consideration in pilot acceptability of a helicopter is the - feel - provided through the flight controls. Considerable effort is expended on helicopter feel system design so that pilots will be comfortable and will consider the helicopter desirable to fly. In order for an FFS to be representative, it should - feel - like the helicopter being simulated. Compliance with this requirement is determined by comparing a recording of the control feel dynamics of the FFS to actual helicopter measurements in the hover and cruise configurations. (1) Recordings such as free response to an impulse or step function are classically used to estimate the dynamic properties of electromechanical systems. In any case, it is only possible to estimate the dynamic properties as a result of only being able to estimate true inputs and responses. Therefore, it is imperative that the best possible data be collected since close matching of the FFS control loading system to the helicopter system is essential. The required dynamic control tests are described in Table C2A of this attachment. (2) For initial and upgrade evaluations, the QPS requires that control dynamics characteristics be measured and recorded directly from the flight controls (Handling Qualities - Table C2A). This procedure is usually accomplished by measuring the free response of the controls using a step or impulse input to excite the system. The procedure should be accomplished in the hover and cruise flight conditions and configurations. (3) For helicopters with irreversible control systems, measurements may be obtained on the ground if proper pitot-static inputs are provided to represent airspeeds typical of those encountered in flight. Likewise, it may be shown that for some helicopters, hover, climb, cruise, and autorotation have like effects. Thus, one may suffice for another. If either or both considerations apply, engineering validation or helicopter manufacturer rationale should be submitted as justification for ground tests or for eliminating a configuration. For FFSs requiring static and dynamic tests at the controls, special test fixtures will not be required during initial and upgrade evaluations if the QTG shows both test fixture results and the results of an alternate approach (e.g., computer plots that were produced concurrently and show satisfactory agreement). Repeat of the alternate method during the initial evaluation satisfies this test requirement. b. Control Dynamics Evaluations. The dynamic properties of control systems are often stated in terms of frequency, damping, and a number of other classical measurements. In order to establish a consistent means of validating test results for FFS control loading, criteria are needed that will clearly define the measurement interpretation and the applied tolerances. Criteria are needed for underdamped, critically damped and overdamped systems. In the case of an underdamped system with very light damping, the system may be quantified in terms of frequency and damping. In critically damped or overdamped systems, the frequency and damping are not readily measured from a response time history. Therefore, the following suggested measurements may be used: (1) For Levels C and D simulators. Tests to verify that control feel dynamics represent the helicopter should show that the dynamic damping cycles (free response of the controls) match those of the helicopter within specified tolerances. The NSPM recognizes that several different testing methods may be used to verify the control feel dynamic response. The NSPM will consider the merits of testing methods based on reliability and consistency. One acceptable method of evaluating the response and the tolerance to be applied is described below for the underdamped and critically damped cases. A sponsor using this method to comply with the QPS requirements should perform the tests as follows: (a) Underdamped Response. Two measurements are required for the period, the time to first zero crossing (in case a rate limit is present) and the subsequent frequency of oscillation. It is necessary to measure cycles on an individual basis in case there are nonuniform periods in the response. Each period will be independently compared to the respective period of the helicopter control system and, consequently, will enjoy the full tolerance specified for that period. The damping tolerance will be applied to overshoots on an individual basis. Care should be 364 VerDate Sep<11>2014 16:30 Jun 25, 2019 Jkt 247047 PO 00000 Frm 00374 Fmt 8010 Sfmt 8002 Q:\14\14V2.TXT PC31