## Federal Aviation Administration, DOT

Pt. 60, App. D

the helicopter data. The procedure for evaluating the response is illustrated in Figure 1 of this attachment.

- (c) Critically Damped and Overdamped Response. Due to the nature of critically damped responses (no overshoots), the time to reach 90 percent of the steady state (neutral point) value must be the same as the helicopter within ±10 percent. The simulator response must be critically damped also. Figure 2 of this attachment illustrates the procedure.
- (d) Special considerations. Control systems that exhibit characteristics other than classical overdamped or underdamped responses should meet specified tolerances. In addition, special consideration should be given to ensure that significant trends are maintained.
  - (2) Tolerances.

(a) The following summarizes the tolerances, "T" for underdamped systems, and "n" is the sequential period of a full cycle of oscillation. See Figure D2A of this attachment for an illustration of the referenced measurements.

 $T(P_0)$  ±10% of  $P_0$ 

 $T(P_1)$  ±20% of  $P_1$ 

 $T(P_2)$  ±30% of  $P_2$ 

 $T(P_n) \pm 10(n+1)\%$  of  $P_n$ 

 $T(A_n)$  ±10% of  $A_1$ 

 $T(A_d) \pm 5\%$  of  $A_d$  = residual band

Significant overshoots First overshoot and  $\pm 1 \ \text{subsequent}$  overshoots

(b) The following tolerance applies to critically damped and overdamped systems only. See Figure D2B for an illustration of the reference measurements:

 $T(P_0) \pm 10\%$  of  $P_0$