Pt. 135, App. A 14 CFR Ch. I (1-1-19 Edition) (a) There must be a fuel strainer or filter between the tank outlet and the fuel metering device of the engine. In addition, the fuel strainer or filter must be - (1) Between the tank outlet and the engine-driven positive displacement pump inlet, if there is an engine-driven positive displacement pump; (2) Accessible for drainage and cleaning and, for the strainer screen, easily removable; and (3) Mounted so that its weight is not supported by the connecting lines or by the inlet or outlet connections of the strainer or filter itself. (b) Unless there are means in the fuel system to prevent the accumulation of ice on the filter, there must be means to automatically maintain the fuel-flow if ice-clogging of the filter occurs; and (c) The fuel strainer or filter must be of adequate capacity (for operating limitations established to ensure proper service) and of appropriate mesh to insure proper engine operation, with the fuel contaminated to a degree (for particle size and density) that can be reasonably expected in service. The degree of fuel filtering may not be less than that established for the engine type certification. 45. Lightning strike protection. Protection must be provided against the ignition of flammable vapors in the fuel vent system due to lightning strikes. Cooling 46. Cooling test procedures for turbopropeller powered airplanes. (a) Turbopropeller powered airplanes must be shown to comply with FAR 23.1041 during takeoff, climb, en route, and landing stages of flight that correspond to the applicable performance requirements. The cooling tests must be conducted with the airplane in the configuration, and operating under the conditions that are critical relative to cooling during each stage of flight. For the cooling tests a temperature is - stabilized - when its rate of change is less than 2 SectionF. per minute. (b) Temperatures must be stabilized under the conditions from which entry is made into each stage of flight being investigated unless the entry condition is not one during which component and engine fluid temperatures would stabilize, in which case, operation through the full entry condition must be conducted before entry into the stage of flight being investigated to allow temperatures to reach their natural levels at the time of entry. The takeoff cooling test must be preceded by a period during which the powerplant component and engine fluid temperatures are stabilized with the engines at ground idle. (c) Cooling tests for each stage of flight must be continued until - (1) The component and engine fluid temperatures stabilize; (2) The stage of flight is completed; or (3) An operating limitation is reached. Induction System 47. Air induction. For turbopropeller powered airplanes - (a) There must be means to prevent hazardous quantities of fuel leakage or overflow from drains, vents, or other components of flammable fluid systems from entering the engine intake systems; and (b) The air inlet ducts must be located or protected so as to minimize the ingestion of foreign matter during takeoff, landing, and taxiing. 48. Induction system icing protection. For turbopropeller powered airplanes, each turbine engine must be able to operate throughout its flight power range without adverse effect on engine operation or serious loss of power or thrust, under the icing conditions specified in appendix C of part 25 of this chapter. In addition, there must be means to indicate to appropriate flight crewmembers the functioning of the powerplant ice protection system. 49. Turbine engine bleed air systems. Turbine engine bleed air systems of turbopropeller powered airplanes must be investigated to determine - (a) That no hazard to the airplane will result if a duct rupture occurs. This condition must consider that a failure of the duct can occur anywhere between the engine port and the airplane bleed service; and (b) That, if the bleed air system is used for direct cabin pressurization, it is not possible for hazardous contamination of the cabin air system to occur in event of lubrication system failure. Exhaust System 50. Exhaust system drains. Turbopropeller engine exhaust systems having low spots or pockets must incorporate drains at those locations. These drains must discharge clear of the airplane in normal and ground attitudes to prevent the accumulation of fuel after the failure of an attempted engine start. Powerplant Controls and Accessories 51. Engine controls. If throttles or power levers for turbopropeller powered airplanes are such that any position of these controls will reduce the fuel flow to the engine(s) below that necessary for satisfactory and safe idle operation of the engine while the airplane is in flight, a means must be provided to prevent inadvertent movement of the control into this position. The means provided must incorporate a positive lock or stop at this idle position and must require a separate and distinct operation by the crew to displace 522 VerDate Sep<11>2014 08:20 May 17, 2019 Jkt 247048 PO 00000 Frm 00532 Fmt 8010 Sfmt 8002 Y:\SGML\247048.XXX 247048